(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
rec(up(x)) →+ up(rec(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / up(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
rec,
sent,
no,
top,
checkThey will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top
(8) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
sent, rec, no, top, check
They will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sent(
gen_bot:up3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
sent(gen_bot:up3_0(+(1, 0)))
Induction Step:
sent(gen_bot:up3_0(+(1, +(n5_0, 1)))) →RΩ(1)
up(sent(gen_bot:up3_0(+(1, n5_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
rec, no, top, check
They will be analysed ascendingly in the following order:
rec < top
rec < check
no < check
check < top
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
rec(
gen_bot:up3_0(
+(
1,
n167_0))) →
*4_0, rt ∈ Ω(n167
0)
Induction Base:
rec(gen_bot:up3_0(+(1, 0)))
Induction Step:
rec(gen_bot:up3_0(+(1, +(n167_0, 1)))) →RΩ(1)
up(rec(gen_bot:up3_0(+(1, n167_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
no, top, check
They will be analysed ascendingly in the following order:
no < check
check < top
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
no(
gen_bot:up3_0(
+(
1,
n160337_0))) →
*4_0, rt ∈ Ω(n160337
0)
Induction Base:
no(gen_bot:up3_0(+(1, 0)))
Induction Step:
no(gen_bot:up3_0(+(1, +(n160337_0, 1)))) →RΩ(1)
up(no(gen_bot:up3_0(+(1, n160337_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
check, top
They will be analysed ascendingly in the following order:
check < top
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
check(
gen_bot:up3_0(
+(
1,
n160701_0))) →
*4_0, rt ∈ Ω(n160701
0)
Induction Base:
check(gen_bot:up3_0(+(1, 0)))
Induction Step:
check(gen_bot:up3_0(+(1, +(n160701_0, 1)))) →RΩ(1)
up(check(gen_bot:up3_0(+(1, n160701_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
top
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(22) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
check(gen_bot:up3_0(+(1, n160701_0))) → *4_0, rt ∈ Ω(n1607010)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
no(gen_bot:up3_0(+(1, n160337_0))) → *4_0, rt ∈ Ω(n1603370)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(30) BOUNDS(n^1, INF)
(31) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n167_0))) → *4_0, rt ∈ Ω(n1670)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(36) BOUNDS(n^1, INF)